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ABSTRACT
The angle ¢ which the free boundary of an extreme wave makes with the

horizontal is the solution of a singular, non-linear integral equation that

P

does not fit (as far as we know) into the theory of compact operators on

P 3

Banach spaces. It has been proved only recently that solutions exist and that

{as Stokes suggested in 1880) these solutions represent waves with sharp
crests of included angle 2n/3. In this paper we use the integral equation,
known properties of solutions and the technique of the Mellin transform to

obtain the asymptotic expansion

H "
¢(s) = % + ) as P+ ols k) as s + 0 , (*)
n=1

to arbitrary order; the co-ordinate s is related to distance from the crest
as measured by the velocity potential rather than by length. The first few
(and probably all) of the exponents u, are transcendental numbers. We are

unable to evaluate the coefficients a, explicitly, but define some in terms

1
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E:E of global properties of ¢, and the others in terms of earlier

1 ‘:-f: coefficients. The derivation of (*) includes an assumption about a question
\ in number theory; if that assumption should be false, logarithmic terms .
‘::‘ un Il‘n,j

‘-. an'js {log s) , with mn'j a positive integer, would enter the series at
‘::: very large values of n.

o~ Our results confirm the heuristic calculations of Grant (4] and Norman
A

EE:: {9], and, in effect, remove a tentative element from certain statements in
.;'..':, those papers.

8

%

AMS (MOS) Subject Classifications: 76B15, 45G0S.

EE Key Words: water waves, non-linear integral equations, asymptotic analysis.
Z:ﬁ Work Unit Number 1 - Applied Analysis
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SIGNIFICANCE AND FXPLANATION

ideal liquid which is in two-dimensional, irrotational motion under the action

This paper concerns waves of permanent form on the free surface of an

of gravity. We consider only extreme waves, often called 'waves of greatest
height'; each ‘of these is the end-member of a one-parameter family of waves,
and is distinquished from other ‘'smaller' members of the family by a sharp

cresty .o—&a-liguxomliiéi Although this corner is physically unrealistic,
oceanographers have given such idealized, extreme waves a great deal of
attention since Stokes postulated their existence in 1880. (One reason may be

the physical importance of the smaller waves, and that scientists like to

interpolate.)

The present paper is a contribution to the strict mathematical theory of
extreme waves, which has emerged only since 1978. We derive rigorously an
asymptotic series that describes the flow near the crest. This confirms and

sharpens certain earlier exploratory results due to Grant idfbnnd Norman , (93 .

The series should play a useful part in numerical computation of extreme

vaves . B
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.The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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vi o4 ON THE BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM
C. Jo Amick' and L. E, rraenkelz
1. Intraduction

This paper concerns gravity waves, of permanent and extreme form, on the free surface

of an ideal liquid, the flow being two-dimensional, irrotational and in a vertical plane.
ot By a wave of extreme form we mean one that is the ‘largest' member of a one-parameter
v family of such waves, and is characterized by a sharp crest of included angle 2n/3, as
. shown in Figure 1(a). The existence of such waves was conjectured by Stokes in 1880 and
has ho‘on proved recently. (Yor a fuller account, see the Introduction to [1]:; for back-~
ground material, see [8]).)

letting ¢ denote the local wave angle (that is, the angle which the free boundary

makes with the horizontal; ¢(s) = tnn-1\" (x) in the notation of Figure 1), we shall seek

s the behavior as s + 0 of a solution ¢ of the equation
et
s, )
i‘s} 4(s) -—J K(s,t) LiEl sin o(t) 4 0O<cessTw , (1.1)
MM ]o v sin ¢
D4 vhere
A 1 1
N ) tangs + tan gt
K(s,t) = T log= 1 o
|tln 2% " tan 2 t|
and
1 (cos? d 21,,~-%
vit) -3 (cos 2t+bl1n > t)

for some b € [0,1] which we regard as fixed henceforth. Here | : v sin 4 stands for
]; v(u)sin ¢(u)du; such abbreviations will be used throughout the paper. Equation (1.1)

refers only to waves of extreme form; the end-value of a parameter has already been chosen.

D
et
& ¢
%3t
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f» The significance of the weighting function v is that v(s) = =C 3¢/3s, where C is a
x”" positive éonstant and ¢ dJdenotes the velocity potential; the constant b distinguishes
the families mentioned earlier: b = 0 corresponds to solitary waves (of infinite wave-
Y3 length and in liquid of finite depth), b € (0,1) to periodic waves in liquid of finite
depth, and b = 1 to periodic waves in liquid of infinite depth.

By a solution of (1.1) we mean a function ¢ satisfying the equation pointwise and
such that

®

2 on (0,%), ¢(w) =0, ¢ is real-analytic

0 < ¢(s8) <
(1.2)

on (0,7), and ¢(s) * % as s*0 .
Such solutions are now known to exist ([%), [2), [3], (7}, [13)).

There have been many proposals for calculating the shape of the free boundary of an
extreme wave by a combination of analytical and numerical methods (long lists of references
are given in (5) and {14]). Such calculations were given a new direction by Grant {4], who
sought the second term of an asymptotic expansion of 2z(x) for X * 0 (here =z = x + iy

denotes the complex co-ordinate in the physical plane, and x = & + i¥ the complex

»

potential), the first term being given by Stokes’s corner flow. Grant pointed out that the

LA
"
3‘ b second term must have an exponent that is irrational and 'probably transcendental'; he
3
3
i concluded that 'the structure near the corner is considerably more complicated than has

X
é’ A

been assumed in the past'. Norman [9) contemplated terms beyond the two considered by
Grant; inferred the nature of all the exponents; introduced the assumption that the numbers

8 defined after (1.3) below, are linearly independent over the rationals; and

3
established certain relationships between the coefficients of the series. (However, it
seems that no coefficient after the first can be calculated by a merely local analysis.)
Longuet-Higgins and Pox [5], (6] used the exponents and functions arising in the work of
Grant and Norman as one part of their theory of waves near an extreme one (the crest being
smooth but of very large curvature).

All these calculations were heuristic rather than rigorous; in particular, Grant (4]

and Norman [9) were concerned only to find analytic functions =z(X) that satisfy the non-

-2= .
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linear boundary condition of the problem in an asymptotic sense as ¢ + 0. In this paper

we proceed from (1.1) and (1.2) to prove that, subject to an assumption about a question in

number theory to be explained presently,

T c u
$(s) ~ = + ) as" as s+ 0 . (1.3)
6 a=1 D

The exponents v, depend on the positive zeros B,. 82. 83.---' with Bj < 81*1, of

/3(148) - tan(B¥/2); the Bj are essentially the numbers discovered by Grant (4), and

B' ~ 0.8027, 82 ~ 2.9066. As Grant thought probable, and as we prove in the Appendix, each

Bj is a transcendental number. Each exponent un is a finite linear combination, with

positive integer coefficients, of numbers in the set (2,51,82....}, and contains at least

one B8.. The u are ordered by u_ < u (as the symbol ~ of asymptoticity in (1.3)

b n n n+1
implies); the first few are 81, 281, 381, 81 + 2, 82, 481. 28, +2, B' + 82, 58,:
381 + 2, 28‘ + 82,... .

The assumption made in the derivation of (1.3) is stated precisely in Section 4; here
we remark that it certainly holds if the set {1,81,82,...} is linearly independent over
the rationals. Moreover, numerical calculation indicates that the assumption is true for

the first hundred of the slightly larger set of exponents arising in the derivation of

(1.3). 1If the assumption should be false, then our method would still be applicable, but
u

n,j'

series at large values of n.

n
logarithmic terms a n(loq 8) n,j’ with mn,j a positive integer, would enter the
We cannot evaluate the coefficients a, in (1.3) when u € (81.82,83,...}: we
define such coefficients by integrals involving the global behavior of ¢. When
un ¢ {8 .,8.,8_,...}, the corresponding coefficient a, is determined by the previous
coefficients aq,....a _4; this agrees with Norman's results in (9].

The expansion (1.3) can be transformed and integrated to yield

u
z(x) ~ -ig 1’3(— 10230 ) b (ix) " as x+0 , (1.4)
n=1

where the eonstant g is the gravitational acceleration, arg(iyx) € [-7n/2,7/2), and the
coefficients b, are real. If the get {1,31,ﬂ2,-..} is linearly independent over the

rationals, then bn = 0 whenever the linear combination defining un contains a multiple

3=




Q. .
"
S
e of 2. The expansion (1.4) is then of the form proposed by Norman (9], if we interpiet
{
\ liberally certain tentative remarks in that paper (for example, that it is ‘possible to
"
: : consider solutions ... corresponding to combinations of terms from several roots' of
o
‘, \',’ /3(148) = tan(B%/2)).
h The plan of the paper is as follows. We begin Section 2 by making the transformation

1 -1
we € = tan 3 8 $(E) = ¢(2 tan &) in order to obtain a kernel k(£,n) that is simpler than

i i

.f::.’ K(s,t). (In effect, we map the unit disk in the plane of { = pe s onto the half-plane
\'

'\ : {w = 0 + 1E : 0 < 0} by the conformal transformation ® = ({~1)/(f+1).) Since ¢é(s) =
LN

1
v(tan 3 s), an asymptotic expansion of V() for £ + 0 yields one of ¢(s) for

s + 0. The next step is less obvious; we cast the integral equation (2.1) for ¥(£) into

&
o
‘J a form, (2.10), that contains an elaborate non-linearity but has the virtue of allowing us
X
::1 to construct the expansion of V¥(E) by an inductive process. To begin this process, we
a
show that V(E) - x/6 = O(E) for some a € (3 %).
." 1 In Section 3 we combine this preliminary estimate with the use of the Mellin transform
3
.,,.} to show first that
) ¥ & L
WE) =+ AL +O(E) as E* 0 (1.5)
p o for any t e (51.1), and then that this result implies the improved approximation
3 .‘q i 31 281 m
Sy ¥(E) = Iy + A,E + A g +O0(E) as £+ 0O (1.6)
N 2
<
'J-:; for any m € (281'81 + 2); here Az is a known function of A,.
¥4
The step from (1.5) to (1.6) points the way to the long inductive proof, in Section 4,

g

N of the main results of the paper, which appear in Theorem 4.5 and Corollaries 4.6 and
s
:f“ 4.7. The Appendix concerns some properties of the numbexs 8 5
:':r’,
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AR 2. Preliminary transformations and estimates
t -
&, . Under the transformation £ = tan % s, "N = tan % t and Y(E) = 4(2 tan 15) = ¢(s),
&f equation (1.1) becomes

5 !

] 1 = i
‘.r_. W(E) ....J k(s'n)wdn' (] <E & Y (2.1)
TV 3’0
M ' "0 w 8in ¥
) where

+ -1 2 - 1

Tl k(&,m '%1°9T%-':]' and win) = (1 +n2)" 2(1 + 00~ 72,

s

-'c'*- By a solution of (2.1) we mean a function ¢ satisfying (2.1) pointwise and such that

~
‘*'1 . -1

] 0 < $(E) < 3 on (0,), V(E) = Oo(F ') as & + =, § is real-analytic
) (2.2)
i . on (0,=), and W(E) > as £E>0 .
&S
2, It is to be understood henceforth that £ € (0,2). Occasionally we set £ = 0, with the
": implication that ¥(0) = v/6 and ¢ e C[0,») (even though in the original problem ¢ is
e an odd function on R\ {0}).

"\‘

-~ 4

oo Combining (2.1) and the formula ([1], p. 197)

~1

" -

».:4 Jo k(E,n) dn 6 v

A

> * we obtain
: I d c N
o WE) - o= Jo k(E,n) 5 loq{n Jo w sin ¢}an ,
e
i." : for any constant C > 0., Define

Ve,

"
"1 Y(E) = ¥(E) =2, (EY)(n) = 2w(n) sinlg + Y(M) (2.3)
then

) Y(E) Jo k(E,n) — m 109{n Jg EYlan . (2.4)
a
,‘ Our next transformation of the equation is more elaborate; it involves the integrated
:":: kernel (used extensively in ([1])

2 2

. 13 1 + -
Py q(&,n) = JO k{t,n)dt - {E log Eon + n log '15-—2'9-"-} R
Ll n

*'4' with
2 2_2

L 1 [ -n"]

< q (E,n) = — log '
. n L] n2
——- and the non-linear operator F defined by
‘ .

:I'.i
%
o
o -5-
-

" - o - '_-.- ’.~.
r"“' *”") f:. -J'. o g - ..
Al s “aty) R
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A |

P :
ey 1
",
8
¥ (FY)(n) = 1oq{;:- ]: EY} + "(g;“") -1 (2.5a)
A 0 EY
Vol -

. d 1 (n

2 = gn In dogly Io ey}l . (2.5b)

N

_:’ The “unction Fy is important throughout the paper; we note its behavior for n + 0 and

for n + », By the definition (2.3),

33 (P = 1 +/3 v +orm? + %) as nv o0, (2.6)
.;3 and it follows from either form of (2.5) that
¥ 7 2. 2
i (PY)(n) = /3 Y(n) + O(Y(n)" +n") as n+ 0 . (2.7)

N We claim that

& 1 n

N o<]on<joa<conse., 1¢<nce , (2.8)

where the constant depends on Y. The lower bound follows from (2.6), in which Y{(n) + 0

sorwa,

D

as n + 0, and because (EY)(E) > 0 on (0,#) by (2.2). For the upper bound we have
» 2 -9
!: B < 2 [ w1 “24n = I3 40 uc-';dt <=

by (3), p. 657, if b e (0,1], and by (2], Theorem 4.7(a), for the case b =0 of a

- v TR k
- ».-OW '

-1
solitary wave. Also, n(Ey)(n) is bounded because w(n) =O0(n ) as n » =; hence

&8

(2.5a) and (2.8) show that

3}? Jtry)(n)| € const. log n, 2<nc> (2.9)
)

1gd LDMA 2.1. If %/6 +Y is a solution of (2.1), then

R 1 -

YE) =3 [o rE,me(nian, 0 <E <=, (2.10)

o where

N . ] 1202

ERY, E(E,m) = - ay(E,m) = - 37 log = . (2.1M)
B n

:J

Y Proof. With the notation (2.3), egquation (2.1) becomes

% 1 (=

: €t YE) =3 [o k(E,m -‘E%m dan .

¢ 0
3 Differentiation of this with respect to § is legitimate if the resulting integral is

L] .-;ﬁ:_ _‘;:‘"‘,‘ &,

written as a Cauchy principal value; noting that EXE(E,n) = -nkn(E M), and integrating by

¥

. parts, we obtain

‘Lqﬁ

‘*w EY'(E) = -] k(Em & {—%)—(L}dn , (2.12)
-6=

et ¢ '( . 7. a “EP - LR R .- - - ., . -
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R
O
% .
Y “
[+

e where the integral exists by the properties (2.2) of ¢ = n/6 + Y and because

-1

( * P'(n) =o(n ) as n * 0 (see [7)). We add (2.4) and (2.12), refer to the definition
o

: (2.5a) of FY, and integrate with respect to £; there results

Y 1 d
.iz Ev(e) = 3 [y at&,my = (FY)(myan .

We may integrate by parts because (for fixed £ € (0,0), as elsewhere) q(f,n) is
-1

,." o(n log 1/n) as n +* 0, and is O(n ) as n + ®, and because we have the estimates
;;f (2.7) and (2.9) for Fy. Accordingly,
3N 1=
0 EY(E) = - 3 [ a (E,mF(man

and this is (2.10).

-

-
S LFMMA 2.2. If w/6 + Y is a solution of (2.1), then there exists an exponent

W
] 13
3 : @ e (3,3) such that Y(§) = o(£%) as £ + 0.

N

’ Proof. In this proof we abbreviate (Fy)(n) to E‘Y(n), and similarly for other
A -
.-a::‘ functions of the same kind.

>
. (1) For any c e (0,1), 1let £ € (0,c] and rewrite (2.10) as
.',
" 1 ;c
A e =3/ T(E,MF (n)an + R (E,c), 0<ESc , (2.13a)
N where, in view of (2.7) and (2.9),

*5

- 1 ¢

¥ - |=

% IRY(E,C)l I3 Jc r(E.n)FY(n)dnl
it

A" 2 2
W 1 hd

< const:.{f2 =l1og -LE'-—"—LIdn + % 3 log n an)
ck 2 2 2
n n

. 2
" ¢ o
29 < const.{] log —— au + £ [o 129 1 4n)
Yo c/€ u2_1 2 n2
f~5
:: < const. £/¢c , (2.13b)

9

where the constant depends on Y but is independent of c¢. It is natural to define
n
G (m =2 sin{g + Y(m} -1

then G, (n) ~ /3yY(n) as n+ 0 and Y(n) + 0, and, by the definition (2.3),

-~

SABOAPS |

BY(H) = win)(1 + GY(PI)} =1 + GYln) + O(nz) as n*0 .

—
N . Moreover, we can so define Uy, vY and wY that
Y
.
3
\i
3 .
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o -+ fhe vom®nT -L—! 6, +om®)

(» Jo By

N ; n (n) 2 ’
i-, loq(; )-109(1 +;‘-] G, + o(n J)=—%—] +0o(n”) ,

G (M) = cos Y(n) - 1+ Y3 sin v(n) = /3 W AT

VAN
!
S,

X
then
_; Gy('\) >0, uy(n) * 1, vv(") + 1 and wY(n) +1 as n+0 , (2.14,
ﬁ:ﬁ and
f§gg F M = {v (m - v (n) -G (MU, )y 3 I G, *+ G (m + 8 (n)
o y 1N -
e =/3{v.() -u -G _(MU_(m} = Wy +73 4 + 8
o ;q' { MUY MLY (M) N 3 - J o %Y 3 W (m)y(n) Y(n) '
E)
LN .
: .\ where Gy(n) =0(n) as n + 0.
L
:Z_ t! Finally, define a linear operator L on the space C[0,c] by
dhns 1
T (LE)(E) = FJ x(€,m [{V, (M)-u, (n)-G, (U, (n)} N W E+ W (ME(m)]an (2.15)
~‘-“‘ 3
}::2 and the integral equation (2.13) becomes
f :f' ’
ol Y(E) = (IN(E) + S (E,0), 0<E<c | (2.16a)
SR
- where
" e 1 ¢
:-f s (E,c) = B (E,0) + 3 I r(E,m8 (n)dn = O(E/e) (2.16b)
N'::‘-: because
ARSI 2
”, E 1 ]
::f ”co r(E.n)GY(n)dnl €< const. 52 f:/’llog 1 2 qud\x < const. c€ . (2.17)
Y u
A 4 (ii) For every € @ (0,21-], choose ¢ = c¢c(€) so small that
IR
‘.‘-.'.' - - + |1 - 0
3}" IvY(n) U (m Gy(n)uy(n)l | WY(n)l <€ for au1 n e [0,c(e)]
X ol this is possible by (2.14). Por any a € [0,1) and any € € (0,'4'], define the Banach
space
;; -, * - - .
32 X, = X (c(e)) = {£ eclo,ce)] : 1£1 <=} ,
:$§h where
1Ry -3
N Vel = suDgp o) g leE] .
E e
e Consider the linear operator L defined by (2.15); we wish to show that L maps xa
Ay
.
2 'i'-] into itself, for ¢ sufficiently small and for some a > 31, and that
‘PR
byg
YAy 8-

AR \ \". o~ $"‘"\"' A s"‘\".
\ RJ RS
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3
3
Y
b4
b9
a-::.
RN
o " T sup e /1EN <1 .
{a) fexu\{o} a a
i - . It is easy to show that Lf € C{0,c(€)] when f € Xa' and we estimate lLfll'J as follows.
B
e ‘ 1 € . €{1+€) (n
leeor ] € & S g ni | (BEEL fR1e] + (14e)[g]1an
g
_‘.:-' 1 cle) a
b <=_ (eener [ lr(e,n)l(— n® + n%)an
I

2 2
< L (1ee)(1 + %)Ifla [: ';' |10g l'g—gr'l—Llr\adr\
n

AN

N

- :
Y

At

-.

2
- 1 [ a (@ ]13 | a
_/5: (HE) (1 + T K Io |10q ) fu aw ,

e where 0 < £ < c(€). It follows that
o €

& L ) € (e (1 + Toua)

o

T vhere
A - 2
\ 1 e
— u(a) = — !o l10g J1—-"—_:,—]-Iv.x"du

va /in u

AY
"“:\ > a 142 1y’ a

: -"—U log 2 udu+2]° loq—-%-udu}
5 /3n |1-u | u
L)

) The first of these two inteqrals is evaluated in Section 3, see (3.11a); in the second, we

LY
"'\_.’ set u = 1/x and integrate by parts; then

N 1 an = 4 @
J§ ) u(a)-—{—tan?-+1+aj dx2 b (2.18)
» ) /In V2 x%x*-1)

>4

Y To obtain a simple majorant, replace xa by 1 in the last integral, which is then easily
; ! evaluated; thus

d
F'\ u(a) € 1 {tan S 2— + = 1oq(1 +7/2)} = t(a), say.
: /3(1+a)

t
X 1
" Now T(3) < 0.82, ‘t(%) > 1.16 and Tt'(a) >0 on (0,1); hence there exists a number
o ae (5 3-) such that u(a) € t(a) € t(a) < 1 for all a € [0,a}). If we choose €
g sufficiently small, then 1LI . < 1 for all ae to,al.
:r (144) with € and c = ¢(c) now fixed, the estimate (2.16b) of SY may be written
3%
- S (E) = 0(f) as £ + 0. Hence S_€ X for all a € (0,1), and so the equation
et Y Y a
e - £(E) = (L£)(E) + S _(E) has a unique solution f € X for each a € {0,a]. Since
M)
)
e -9~
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o’ these solutions are identical; in other words, fa = fo for all a @ [0,;]

X cXx
a

because each fa €@ X . We know that Y € xo and satisfies (2.16a), whence Y = fo e xa

0

o ~ ~

r3 for all a € [0,a]l. In particular, Y @ X_, so that a may be chogsen as the exponent in
'y

4 a
;f1 the statement of the lemma.

¥y

Remark. We shall see from Lemmas 3.1 and 3.2 that the best possible exponent is the

) 1 number B' introduced after (1.3), so that
o8
)‘." 1 81"
Q8 tan —— = 1 .

P i f3(148 )
o 1
TN

(8' is best possible if A, # 0 in Lemma 3.2.) This corresponds to only the first term

of u(a) in (2.18), so that precise treatment of the second term is not worth while.
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o 3. The asymptotic expansion of ¢(£) to three terms
‘.“ : Our observation in (2.7) that (FY)(n) ~ /3 Y(n) as n + 0 suggests that the integral
":;;: equation (2.10) be written
:,S: Y(E) = -:/—_5 I; HEmY(Man +p (5), 0<¢E< 1, (3.1)
vhere
_‘{ 9,(5) = % !:, r(E,MIFI(M) = /3 y(n)}an + 3} ]'1' r(E,n)(FY)(n)an . (3.2)
:‘] From (2.7) and Lemma 2.2 we have
-~ i} (T = /3y =om™) as n+o, with ae 3D
, and it follows (by an estimate like (2.17) for the first integral in (3.2), and an estimate
’ : like (2.13b) for the second) that °Y(E) =0(f) as E + 0.

:" All the results to come will be consequences of (3.1) and (3.2). Our plan is to boot-
g' strap from some expansion of ¥({) for § + 0 (at present, ¥%/6 + O(Ec)) to an estimate
) of p_(E) (at present, O(E)), and then to derive a more complete expansion of WV(£)
| .'.;; from (3.1), regarded as a linear equation for Y in which c:vY is 'known'. The proof by
| :; induction in Section 4 will follow this program to exhaustion; without the more explicit

Lo first steps in this section, it would probably be incomprehensible.

: The Mellin transform ([12), p. 7) will be our majin tool for analysis of (3.1). Ilet
: . f b- piecewise continuous on (0,®), define ¢(x,s) = x"‘f(x) for x > 0, where
;_;' s = g+it € ¢, and assume that ¢é(+,s) € L1(0,-) for a < 0 < b. Then, for 8 in this

strip, we define the Mellin transform £ of f by

f(s) = ]: P eoax (3.3)

we also write this as f£(s) = f(x). Note that f is analytic in the strip Re s € (a,b).

The inversion formula ((12], p. 46) is
ctiw

® ¢(s)ds, a<c<b , (3.4)

é £ = 201 Joam X
at points of continuity of f. The product formula ({12], p. 54) 1is
§ ;(-.n);(mn,-' x ]; uA+B-1f(u)g(xu)du ' (3.5)
;".' provided that ;(-ul) and ;(s+n) have a common strip of convergence. Finally, we
. record the following property ([12], p. 118) of the Mellin transform.
]
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A

5%

&

8 . o

b, o P 8x

R4 It Iolx £(x) | x ¢ foreome o e (a,b) and

4 - 1 1 (3.6)

A some pe (1,2), then f(o+i.) € Lp,(-",“), where s roi 1,

"\

1Y

‘ To evaluate certain contour integrals arising from (3.4), and to state our theorems,

:; we shall need the following lemma, a variant of which has already been given in [5) for a

different purpose. The significance of the exponents Bj in the lemma is evident from the

.

28N observation (a particular case of lLemma 4.2) that, if V3(148) = tan(Bx/2) and B8 > -1,

iy

£q)

3 § then

Al 1 8 8 ;

R — Jp rtEmnan = £7 +atf), 0<cE<1 (3.7)

3

'{ where a(f) is O(f) and real-analytic on [0,1), and contains only odd powers of £ in

bk

;; its Taylor series about the origin. 1In other words, the linear integral operator in (3.1}

'y

)2 leaves the functions £ 3 almost invariant, merely adding to them such functions a, and

these latter turn out to be unimportant.

LEMMA 3.1. The only zeros of Y3(1-8) + tan{s¥/2) in the half-plane Re 8 < 1 are

simple zeros on the negative real axis. We denote such points by s = -Bj, §=1,23...,

« T™en 8 e (2§-2,23-1) for all 3, and Bj-2j~1+0(j-') as j+ =

with B8, <8
. ——— j ’*1 ,
: (the O-term is negative). Also,
e? 81 ~ 0.8027, 82 ~ 2.,9066, 83 ~ 4.9383 .
) Proof. Set s =1~ 2z/7 and z = x+iy; we have to solve
w3 -

/3

5t -27§z+cotz-0, x>0 ,
Rk
:;:‘ or equivalently, since no zero or pole of tan z 4is a solution,
} gz tan z = ~ -1— . x> 0 .
o 23

If this equation has a solution with y ¥ 0, then the imaginary part of the equation gives

sinh 2y - - sin 2x
2y 2x 4

which is impossible (because sinh 2y/2y > 1, while =~ sin 2x/2x € 0 for O < x € ®/2

and =~ sin 2x/2x < 1/% for x > ¥/2). The remaining assertions now follow from elementary

analysis of the points where the graphs of tan x and of -'nlzfix intersect, for x > 0.
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AL LEMMA 3.2. If ¢ is a solution of (2.1), then
( x B1 2
te : WE) =T+ AL " +O(8") as £+0 ,
3
X ‘e for some constant A, and any L e (31,1). Here 81 is as in lLemma 3.1.
'f Proof. (i) Define
i) N
- (&), 0<cEgcCT ,
g(g) =
.:. | o, 1¢§ ,
X
; and
4
1_;‘ o (E), 0CECT ,
* h(f) =
- 1 1
{ - =y rtEmyman, 1<,
¥y 3
.""j so that (3.1) becomes
2 1
, gE) = == [0 r(E,mgtmian + n(E), 0 <CE <=
' 3
Ak
Y <. since the integrand is zero for n > 1, and both sides are zero for £ > 1. Setting
30N .
'.r:. n = fu, we arrive at a form suitable for the Mellin transform:
L)
A‘ 1 -
0 g(€) = == [ R(w)g(Ewdu + h(E), 0<E <= , (3.8a)
b i
) : where
e 2
o R(u) = r(l,u) = - % log -l'—'“z—l . (3.8b)
SN u
? Because of the plethora of notation, we emphasize that g is a truncated form of
3 -_—
“J Y = ¥-¥/6, that h(E) is presumably of smaller order than g(f) as £ + 0, and that the
dependence of h on Y is now implicit.
’,
;‘5 (11) The term h(E) may be estimated as follows. let a € (%,%) be the exponent in
[ 1
4'; Lesa 2.2; then for £ > 2 (and hence u < 2 when we set n = Eu)
— In(e)] < + I;lr(E.n)l ly(n)|an
i
é X 1/€ L1-u?]
: < const. £% ]o/ |10g -‘; [v® au
u
5¢
Bie! a (1/F 1 a
PatA, < const. £ | log — u du
: 0 u
.
. ) -1
) < const. £ log & ,
»
2
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:." and for 1 <€ £ € 2 the integral is bounded by a constant. Since oY(E) = 0(f) as
( A E +» 0, we have
‘*“‘N'a const. £, 0<E<CT , ‘
Y Ineey| < (3.9) |
1800 -1
‘\i const. £ (1 + log §), 1¢¢E .
.5 ! It follows that h(s) exists and is analytic for =1 <0 < 1, where s = o+it, and from
. (3.6) that
-"~“ -
q'_‘..,; h(c+i.) e LP,(-",") for all o € (-1,1) and all p' > 2 . (3.10)
'..:_'\i
{.‘ﬁ (i1i) To find the Mellin transform of the function R {in (3.8), we recall that our
N original kernel in (2.1) was
.
: E+n
¢ ¥ - 1
, % k(F,n) logrg—,ﬂ' ’
« []
‘\& and note from [12], p. 192, that (with s = o+it)
*.l
¢ J;u’ 'xu,u)au-lun-;i, M1<a<1 .
Setting u =~ n/f for fixed E € (0,#), multiplying both sides by E', and then integrat-
\A.
-\‘3 ing with respect to £, we obtain
Y 1
I - s-1 bl 8%
:‘.J [o 7" 'atg,man = oty e 1ot .
’ o+1
We may integrate by parts because n'q(E,n) is Ofn log 1/n) as n + 0, and is
‘. O(n°-1) as nh + =, and there results
3
> +1
"] LA | £® s
' j [o na (G mdn = e tan &, -1 co0 1 .
A Set n =Eu and s = z-1; then
2
B o 1og-l-'l-l-du-1nn 2Z1)Y gcRez<2 , (3.11a)
‘0 “2 z 2

that is,

n(z)a%tan‘—’;—'n OCRez<2 . (3.11b)

(iv) We are now in a position to take the Mellin transform of the integral equation

B

W a 1 -

N (3.8a). By lemma 2.2, g(E) = O(§) as £ + 0, with a € (3.%)1 therefore g(s) exists
‘ ) -~ ~

g:‘:' and is analytic for ¢ > -a. We have just shown that h(s) and R(-8+1) exist and are
38!

?‘3, analytic for =1 < 0 < 1. Hence, if =a < 0 < 1, we may apply the Mellin transform to
B (3.8a) and use the product formula (3.5) with A =1 and B = 0:

_p“’ - 1 - s -

e as) = = R(-a)g(s) + h(s), —w <o <1,

o -

LY
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KA or, equivalently,
gi{s) = hls) = D(s)hi(s), - <0 <1, (3.12)
\%
2:}:1 where
A -
Y o(s) = BU18L . . tan(sn/2) . (3.13)
A N Y3-R(1-8) Y3(1-8) + tan(sn/2)
The inversion formula (3.4) gives, for all E e (0,=)\ {1},
. 1 cti® -8 -
., .\_ g(E) = n(£) gl BN E "Q(s)h(s)ds, a<e<t . (3.14)
: : (v) let £ € (0,1), so that g(f) = y(E). Since h(§) = O(f) as £ + 0, it
PN 8
LWL suffices to show that the right-hand side of (3.14) behaves like A‘E 1 + 0(E") for some
_ constant A, and any ! € (81.1)- We prove this by moving the path of integration as far
:".4 -
," -."f' to the left as our knowledge of h allows, and taking the residue at any pole of the
5 _‘ ) integrand between the path in (3.14) and the new one. The details are as follows.
oA
Given c € (-a,1) and t € (81,1), define I‘H to be the (positively directed)
¥ rectangular contour with corners at ¢ + iM and =-L t iM for some large M > 0, and
Bty
v 5-»3 consider the contour integral
\‘::a 251 r" Q(.) (s) .
- The contribution of the horizontal parts (-£ € 0 € c, t = tM) of I‘H tends to zero
Y
AN - -
2% as M+, because (a) [E®| =£™° with 0 <€ ¢ 1; (b) the fact that tan(sw/2) + i
A
,-: as t +* * with 0 fixed implies, in view of (3.13), that Q(s) = o(t")t (c) the
A ‘, -~
»NC Riemann-Lebesgue lemma, applied to the definition integral (3.3) of h(s), shows that
s his) + 0 as t + t* with 0 fixed.
'.., since h(s) is analytic for =1 < 0 < 1, we conclude from (3.13) and Lemma 3.1 that
-
'y - ~
L4 < the only singularity of £ .Q(l)h(!), with -1 <0 ¢ 1, is a simple pole at s = -81.
= Accordingly,
"‘“ cHie -zu -
“J: 2,1 Ic-i' _,._‘_. g Q(s)h(l)dl)
AP
M4 - L “8(s)n
R L 21 ]r £ "Q(s)h(s)ds
\(‘ M
e 7 81 - 81
- = - - - . 15
; £  res Q(s)"._81h( B) = AL |, say, (3.15)
s and so

l. .'.\.‘\\- h“.-\w. -'. --
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kN L -
= (E) - h(E) = RN [® £t (-reit)n(~trit)a 3.16
NS g = h(§) L) pegl) B Q Yh( t)at . (3.16,
{ '
2904 We bound this last integral (without the factor £ /27) by means of HSlder's inequality,
4 -
3 noting that O(-f+i.) € L3/2(-°,-) because 0(s) = Ot 1) as t * ¥, and that
C AL -
::-._*; h{-2+i.) € Ly(~=,®) by (3.10). As we remarked earlier, the desired result now follows,
/'y
because g(f) = Y(§) for £ € 1 and Nh(E) = O(E) as § + 0.
:4‘. Remarks. 1., As was to be expected from (3.1) and (3.7), we cannot evaluate the
A ~=marss.
4
¥ coefficient A, in lemma 3.2; in (3.15) we have defined it in terms of the global behavior
1
._~ of Y.
N 2. Stokes conjectured (see [1], pp. 194 and 199) that the profile of an extreme wave
2‘ is convex between the crest and the trough; in other words, that ¥(£) is non-increasing
.. on (0,), Now lemma 3.2 and analysis of the equation which results from differentiation
-" - 8
L,
W) of (2.1) imply that E&¥'(E) = A131€ ', O(El)- Therefore we expect that A, ¢ 0, and a
3% calculation shows that this corresponds to l.>1 >0 in (1.4). Numerical evidence ([6],
-
=-"::. equation (2.10) with the value B = 0.131 on p. 776; [14], Table 1) suggests that by >0
~
ﬂ and hence that A, < 0.
¢ N] 8,
3. The term Azi in our next result has a character quite different from that of
8
A‘E 1; instead of arising from (3.7), it arises from terms that are essentially souares of

the first perturbation, and so A, is determined uniquely by A,.

THEORMM 3,3, ¢ 4 ¥ is a solution of (2.1), then

28 1

o LA 1 ",

,}: WE) =+ Al +AL +0(E") as E+0 ,

,:\ for any m € (2!1,81#1). Here A1, 61 and L are as in lemma 3.2, so that t € (81.1),
750} ——— —_—

: ‘q and
——— 2

(4+88 +87) (tan 8 W)A2 )

o - 7 = = 0.1341 A7 .

Ry 2/3(148 )°1/3(1428 )-tan 8 v}

da¢]

k Proof. We shall use the notation in the proof of Lemma 3.2, and shall begin by

,;. 2 showing that the previous estimate (3.9) of h can be sharpened, by means of the result of
-“_:» lesma 3.2, to
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281 81+!
h(§) = c1£ + cze + O(E re 0<ECT (3.17a,

|n(€)| < const. 6'1(1 +logE), 1<¢<& , (3.17b;
wvhere Cy is a constant of no interest, because ultimately it will drop cut of the
integral equation, and C, is a constant that is known in terms of Ay. With this
estimate in hand, we can move the path of integration in (3.14) further to the left than
was possible before. Taking due account of the poles of the integrand between the path in
{3.14) and the new one, we shall obtain the result of the theorem.

(1) Let £ € (0,1). A straightforward calculation gives the following.

(EY)(n) = 2w(n) sin{% + y(m}

2 281 B1+1

-1+/§Y(n)-%n1n + o(n ) .

(num-va-nmﬁﬂnyd%mm-a-ﬁum
5 EY
4+881+83 2 281 81+l
= - 2 A‘n + O(n )y .
2(1+B,)

Since 251 and 81 + £ are not odd positive integers, Lemmas 4.2 and 4.3 yield

281 81*1

% J; rE,mMUPM) - /3 ymlan = cE +cE | +o6 ), (3.18)

where the constant Cg will be a part of C, (and is therefore of no interest), and
2 2
(4+881+81)(tln B1w)A’

C. .= = 2 . (3.19)
6(1+B1) (1+28')

The other term in the definition (3.2) of ov(n) is

) - - e2
3 J, &P = - 37 I, log(1 - nz)(rv)(n)an

e mer (3.20)
i M el Pl L

k=1 n

-17-
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A where the integral is 0(k'1) as k + ®», g0 that the series converges for £ < 1.

Equations (3.18) and (3.20) imply that

281 8'+!.
oY(E) = c‘E + czz + o(f ) .

and thus prove (3.17a), while (3.17b) is a previous estimate.

(11i) Define
2&1
C1£#C2£ ’ 0C<CE<C T,
h.‘(E) =
. o, 1¢¢ ,
s and h, = h~h,. Then, for 0 > -1,
) ' c c
: y 1 2
R h1(') = s+ * s+28 ’
XY - ! -
':ﬁ"& while hz(s) exists and is analytic for -B’ -2 <0< 1, and hz(oﬂ..) e Lp,(-,-) for
RO
A all o e (-814,1) and all p' > 2. The obvious analytic (more precisely, meromorphic)
" continuations of h 1 and h into the strip of convergence of hz will also be denoted by
b4 N N
Fx] h, and h, respectively.
A4 !
:‘»,‘o’ We can now proceed from (3.14) as in the proof of lLemma 3.2, step (v), except that now

i m

W

we move the path of integration to 0 = -m for any a € (281.8 10-!), and collect the

d

residues of the poles of £ "Q(s)h(s) at s = ., - 1 and -28_. Since Q(-1) = -1,

there results

2

B‘ 28
g(E) = h(§) = A'E - c,: + czq(-zs,)i

o

1

¥
e

A

&

m - -4t Py
. 52; /2, £ o(-mrit)n(mritrae

s
Jb ‘

the last integral is bounded as before since h ‘(-ﬂ.) and hz(-nﬂ.) are both in

Ly(=,). Substituting for h(f) from (3.17a), we have

8 28

1 1
Y(E) = A6 "+ czto(-zs,) + 11E

+0(t") as £+0 ,

where C, 1is given by (3.19) and Q(-281) by (3.13).

I ~-18-
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e, d 4. The asymptotic expansion of W¥(E) to any number of terms
1
\ . 4.1. Notation
"
: ',‘\ let N - {0,1,2,... }, m=1{1,2,3,...} and B = {81,82,83,.-. }, where the numbers
30
21’2 8 3 are as in lemma 3.1. We shall prove in the Appendix that the 8 3 are transcendental
.‘:ﬁ
™ numbers .
V) An elaborate notation is needed for the exponents in various series that we shall
] \g construct, because (a) the non-linearity in (2.1), and the presence of the weighting
o,
o
:::: function w there, cause the exponents in the expansion of ¢ to form a fairly
- complicated sequence, (b) further exponents enter, and finally depart, during the course of
W )
’,}; the construction.
N
"" In what follows (my,...,m ,,) 1is a multi-index: m e Ny, for i = 1,...,r+1 and
L%
.-,y\: r is any element of WN. Define
eee H “oe >
A= {5131 IS 'rsr + nr”z n, Feoot L + LI 1}
since A is a countable set, we may write A= {A ,A A ...} with xj < xj”. The
first few numbers Xj are
B 61, 231' 2, 331' 81 + 2, Bzg 481' 231 + 2, 81 + 82, 4, 5311 351 + 2, 281 + 820--0 .
-4 The following subsets of A will be needed.
\ v“
ﬂ - . b3
WO I\a (m1£1 teoot 'rsr tm2m et m 1} .,
:j so that
o A=Ago {2,4,6,... } ,
i?‘ and
‘ ‘ ves H e >
~f§ Ay = {2} v {n181 totmB o+ m g2 m tetm o tm 2},
".q so that
e A=A .
- ju B
Thus each element of AB involves at least one of the 8 j’ we expect the exponents in the
expansion of ¥ to be in AB. The exponents in A3 arise if, for example, we combine
three series as follows: form the product of two series with exponents in A and add a
e ) series with exponents in {2,4,6,... }.
5L
K
k 4'..:: Truncated subsets will be denoted by
N -19-
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m' 3'

Aa(n)-{xjeAB:xj<xn)-(xjeAB:j<n} '

= {) : R
Aa(“) { 3 e A3 3 < n}

B(n) = {Bj eB: Bj < An) .

4.2. Bootstrapping from Y to pY

We now prove that a given expansion of Y, with exponents in As(n), implies an
expansion of pY with exponents in Aa(N) {1,3,5,... }, where N > n+i. This will
allow us to improve the given approximation to Y by the method that we used to pass from
Lemma 3.2 to Theorem 3.3. We shall prove in Theorem 4.5 that, if A3(N) B(N) = g, then
Y has an expansion with exponents in the larger set AB(N)' Hence, if A3 B =@ (which
is a number-theoretic problem addressed in the Appendix), then Y has an infinite
asymptotic expansion with exponents in AB'

We begin by expanding the function FY - Y3y in the definition (3.2) of P 1 then we
establish two basic properties of the linear integral operator in (3.1) and in the first
term of pY. The aecond term of pY has a very simple expansion. Combining these

results, we obtain the expansion of p_, for a given expansion of Y.

Y

LEMMA 4.1. Suppose that, for certain constants A,,

- i u
Y(n) lliehs(n) An - +0(n) as n+0 , (4.1)

where An <u < xnﬂ and u + 81 er {1,3,5...}. Define N = N(n,u) by

A =max{d, e A : A <u+81) .

N b b
(Since lnﬂ < Xn + B, <u+ 81, we have N(n,u) > n+1.) Then
) u+f
- - 3 1
(PN - /3 y(n) )"je";‘“) Bn’+otm ) as n-o (4.2)

where the coefficients By depend only on the A; in (4.1).

Proof. Again we abbreviate (Fy)(n) to FY(n), and similarly for other functions of

the same kind. We have

=20~
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A £ (n) = 20(n) sin(% + Yy} |,

where

-1 2 =1
win) = (14n%) /2(1+bnn) 2214 Y cknz", say, for n <1 .

</
RS

Ly

Define two new operators H and J by

a4
]

.l
>
“.
N

- -1-73
uv(n) !Y(“) 3 y(n)

= w(n){cos Y(n) - 1 + /3(sin v(n) - y(m)I} + (w(m) = 13{1 + /3T y(m)} , (4.3)
and
I -
3 () = Jo {EY 1} .

1
Let us now restrict attention to those n, say n < no, for which |JY(n)| < 3. Then

d
rY(n) = an [n log {1 + Jy(n)}l

4
an (n {JY

m

1
+ 3 -—.ss }], J JY('\) ]

a2
Iy
-

aln ula
-<N -<u

1 1 3
= zy(n) -1+ 2 "L+ 3 nJY —ese } .,

whence

4 1 2 1 .3
P - 3 = > v [ - - e . .
Y(n) /3 y(n) av(n) " { 2 r\:.vY +3 nJY } (4.4)

Although this may seem a very involved formula, it provides a good way of expanding

PY(n) - /3 y(n), given an expansion of Y(n).

Equation (4.3) yields

2% 2 4 3 5
H (n) = {14 ) g M-+ LA e L
k=1

et + ) Cn k{1 + /3 y(m))

— k-
MY
i A u+f
a - + .
oy )-x er. ) P3" o(n ) {4.5)
'\-’ 373
¥
fﬁh' where the constants Dj depend only on the Ay in (4.1) (and on the ck). Consider now
: the remaining terms on the right of (4.4). Since

:‘._'1 N

L5 1N

,‘.'l - — /_ +
o a m) = J0 3y HY} '
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equation (4.5) ensures that the expansion of JY has exponents in A, and hence that the

expansion of

o puAe

qa - - m -1, /=
d“(nJ‘:} (1m)aY+mJ‘;‘ (/31+HY}. m>2 ,

’

o

W
A has exponents in A3. Since 3 Y + HY' and hence JY' are known with error o(nu), it
'Y u+f
e follows that J: and J {/3 Y + H } are known with error O(n ‘) for m > 2. We
“on apply those two conclusions to the terms in (4.4) that follow HY, and the lemma is
-
-‘
S proved.
]
1A
N LEMMA 4.2. For £ @ (0,1) and p > -1,
‘1 Ftan( n/2) 1 p §2k-1
L tan(pm/2) .p , 1 y 1
o wp W &1 K(epzi) £ P AN SR
b= p
1
a fo r(E,n)EPan = '(i"’P) P 109 % + -—35—3
- n(1+4p)
b .S
*i’.‘ 1 2 k-1
~ + =73 if pe{1,3,5...1 .
[ 4 - —
_"' L ke-\{‘!'m} k{1+p=-2k)
> 2
R ¢,

Proof. Denote the integral by IP(E), and define

4
e €, 0cgcn,
"‘i' $ (E) = so that ¢ (8) = —— for a>-p .
18 p P s+p
.4 0o, 1<E&,
K.\ Then
L (E) = [, r(E,m) ¢ _(ma (0<E <
<. = r n n)an < <
- P 0 ' P
T-: - Iy
- ]0 r{1,u) ¢p(Eu)du
.-_R(l-s)Op(s) for - min{p,1} <0 <1 ,
"
1’:-,1 where we have used the product rule, the notation r(1%,u) = R{u), and the statement in
S -
:l-.: (3.11) that R{1-8) exists and is analytic for -1 <o < 1. By the inversion formula and
o
(3.11p),
S 1 cti® _-g tan(sw/2)
J::. 1(5) = 57 jc-i" (a-1)(s+p) 38 -min{p,1} < c <1 .,
¢
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": Consider the integral (of this integrand) around the (positively directed) rectangular
'
.7_ . - contour with corners at ¢ % 12n and =-2n % i2n; here n € N. On the parts o = =2n,
-E? [t] € 2n ana -2n € 0 < ¢, t = £2n of this path, |tan(s%/2)| is bounded; hence the
h N . integrand is O( |l'-2) there, and the contribution of these three sides tends to zero as
;*f‘ n + », Accordingly, IP(F,) equals the sum of the residues at poles with ¢ < c. If

4-;: p F {1,3,5,... }, these are simple poles at s = -p and 8 = -1,-3,-5,... 1 |if
*_::: pe{1,3,5...}, there is a double pole at s = -p, and simple poles at s = =(2k-1),
"::E k e .\{.1_;2}‘ Evaluating the residues, we obtain the result of the lemma.

\

LEMMA 4.3. If p € (2mt1,2m#3) for some me N, and |£(n)| ¢ const. n¥, then, for

€ e(o,1),

m+1 _2k-1
fq TEme(mian -1 5—k— [3 £tnn™Fan + o(eP) .
k=1

Proof. We have

2
1
[o £(EmE(n)an = Jg r(E,ng(n)an - :—E j; log(1 - i;)f(n)an

= [} r,weEman + 3 z 5—— {fg = 1% £mm™an)

1 v g,
+o ) 5— I £(nn"2 .
kwm+2

The assumption that |t (n)I € const. np. in which p 4is not an odd integer, ensures that

the first, third and fourth integrals in this expression are respectively O(EP).

+1 2k+1
ogP~ % £

+
) with p > 2k=1 and o™ >**") with p < 2k-1; the fourth is o( /%)

as £+ 0 and k * ®. This proves the lemma.

LEMMA 4.4. Let the hypotheses in lemma 4.1 hold, let {odd} denote the set

{1,3,5,... } of oad positive integers, and let 2P-1 be the largest odd integer leas than

E"o'

e

u+ 81. Then, as

‘ijﬂ‘f‘

¥

TR o ol ek o]
: e
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Remark.

A ~ k\-‘-'.‘.~-<.h_-_n - A DaACIE S i Ak e AAscn Ancadh .
k=1 . v xj 1
Pytl) = k)' BT+, er anmw T3t T Ly, en_m)nfoaay S5 109§
- j j 3 (4.6
.61
u*B1
+ O(E ]
where
tan(i %/2) 2
F, - 3(‘*Xj) aj, cj - 5;;;;;;7 By (4.7)
but the coefficients E, are defined in terms of the global behavior of Y (and not
merely in terms of the previous Ai and aj).
In (4.6), the set A3m) n {odd)} is probably empty for all N, but, if it

is not, the exponents in it cause no complication (in contrast to any exponents that there

may be in the set Aa(N) n B(N)

to be considered presently), because the logarithmic terms

in (4.6) will be cancelled when we compute the corresponding expansion of Y.

Proof. Recall from (3.2) that

1 41
P (E) = 3 ]o r€.n) PV i(m

and observe that, for £ € (0,1),

I3 Ememicnian =

where the last integral is O(k™ ')

Por the first integral in (4.8), we

lesma 4.3 to the O-term there, recalling that u + 8

form ckE

as k * @ Because

- /3 vmdan + 1 [T rEmenman (4.8)
1 - g
- 70 /7 1est1 - Iy
n
- k=1
13 A mon e, 4.9)
k=1

(PY)(n) = O(logn) as N + =,

apply lemma 4.2 to the terms Bj" 3 in (4.2), and

is not an odd integer. The tem of

(vhere k€ N and ¢ = o(x” ) as k * ®) that result from the Bjn j in

(4.2), from the O-term there and from (4.9) are all collected in the first sum of (4.6)

if k-1 < u+81 (so that k € P)

or in the O-term of (4.6) if 2%x-1 > u+81.

In the

second sum of (4.6) we have replaced I\a(u)\ {oad} by As(u)\l because (4.7) shows

that Py = 0 when Aj

is an even integer.
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?\\‘,‘ 4.3. The expansion of Y
i . Lemma 4.4 provides a generalization of step (i) in the proof of Theorem 3.3, and we
. ::‘:’ are now ready to generalize step (ii). To avoid a conceivable but highly improbable
.
t:# complication, we make
(]
)
oY ASSUMPTION A(N). The sets As(u) and B(N) are disjoint.
d The reason for this will be explained after the proof of Theorem 4.5. We have veri-
>
;43 fied Assumption A(N) numerically for N € 100, and conjecture that it is true for all N.
)
‘3-’4 THEOREM 4.5. If the hypotheses of lemma 4.7 and Assumption A(N) hold, then
.
N A
- 3 v
Y(E) iljehs(u) AET +O(6T) as v,
x for some V € (X“.X‘”‘). Here a new coefficient Aj. with 3§ such that
t ;: A 3 e AB(N)\ As(n). is determined by the previous coefficients A;, with i such that
A%
e Ai e Aa(n), if and only if Xj ¢ B(N).
\ Proof. Again we use the notation in the proof of Lemma 3.2. In view of (4.6), we
-
B\ define
Ny
2 ; %
by, 1 ) x A 3 1
. 2 5% 4 5 e oonm P87+ 1y en onfoa®yt 109
i k=1 j 3 3 3
\ h‘(g)- if 0< &< 1 ,
> 0 if 1<E,
A
A
A
‘,\{»;‘é and h, = h=hy. Accordingly, hz(E) = DY(E) - h1(E) if £ < 1, and hz(E) =
A -
- o(g 1 log &) as & + », by (3.9). The smallest exponent in h,.(E) is 1; hence, for
3 g > -1,
Ty - P F G
i ny(e) = ) .+!z:-'1 +Thenaonm o * D en 0 {oaa} 7 !
- k=1 j 3 b] i 3 (s+) j)
» - -
5 while hz(s) exists and is analytic for -u-81 <0 <1, and hz(oﬂ') e Lp,(-.") for
\)
b all o e (-u-B,,‘l) and all p' > 2. The obvious analytic (more precisely, meromorphic)
», continuations of h‘l and h into the strip of convergence of h2 will also be denoted by
— h1 and h, respectively.
séi?
A%
x4,
e
. _cl
3
T Y
‘,‘:‘ =28~
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let £ e (0,1). We proceed from (3.14) and move the path of integration to o = -v
for any Vv € (XN,LH-B 1): the remarks, in the proof of Lemma 3.2, regarding the contribution
of paths t = M remain valid when the £ there is replaced by VvV, and E-BQ(s);(s) has
no sinqularities for o € (-u-8 1,-XN). There are four sets of poles between the original
path of integration (0 = ¢) and the new one (0 = -V); we consider one set at a time.

(a) The points s = 1-2k, k € {1,2,..,P}, are simple poles of h1, and, since

Q(1-2k) = =1,

Y residues = - ), E .
(a) k=1 !k
(b) The points s = -xj, vhere Xj e AS(“)\ W, are simple poles of h1 and are not

poles of Q by Assumption A(N), so that
3
(E) residues = ZX eA (NN jQ( Xj)E .

(c) The points 8 = =A,, where 1. € A (N) n {odd}, are double poles of h_, and
3j 3j 3 1

x —
. /3: 3
(E) residues = - ):Xjel\a(“)n{odd} Gj{E log ¢ E - (uxj)c .

(d) The points s = -Xj, where ). € B(N), are simple poles of 0O and distinct from

3
those of h1 by Assumption A(N), so that
A
- ] residues = | ned .,
(& xjea(u) h]
where
B, = res Q(c)‘.__xj A . (4.10)

Since £ @ (0,1), we have g(£E) = y(E) amd h(§) = DY(E)r equation (3.14) yields

1 (=Vtie

- -
291 Jov-je & Q(s)h(s)as .

Y(E) = Py (E) + ) residues + 5—

We substitute for pY(E) from (4.6) and for the residues, noting that the terms skEZk-1,

and those containing log(1/£), in (4.6) are cancelled by the residues; there results

/3! j
Y(E) = )-x e, (nAm P (19002 )}c = lxje,\ (ynfoaar Sy T E
(4.11)
A v - u+d
I LB = ity - 1
+ 21:’88(“) e ) e 0, € avrem-vnae s oe )
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where QO(-v+i.) € La/z(-",'), because Q(=-v+it) = O(t-‘) as t + =, and

s v
h(-v+i.) € La(-,-), 80 that the integral (without the factor & /2v) is bounded, by

HSlder's inequality.

3 in (4.11) belong to AB(N)o Indeed, if

Xj e AN AB' then kj e {2,4,6,... }, and this is impossible in (4.11) because there
Xj én or Xj e {odd} or Xj e B. Since in (4.11) each Aj < A4+ it follows that

We claim that all the exponents A

Xj e Ae(u).

Comparison with (4.1) shows that in (4.11) the coefficient of £ 3 must equal Aj

A

whenever Xj e As(n)- Consider the coefficient of £ 3 when lj e AB(N)\ As(n)t if
Xj ¢ B(N), then (4.7) and lLemma 4.1 show that the coefficient is determined by the
previous Ayl if A 3 @ B(N), then (4.10) shows that the coefficient is not so determined.
Of course, we relabel this new coefficient Aj in either caae.

Remark. Assume that the hypotheses of lemma 4.1 hold but that Assumption A(N) is
false, for some particular n and N(n,u). Then there exists an exponent
X- e Aa(m n B(N), and Q(s)h(s) has a double pole at s = -X-. This causes the term
with 3 = m in (4.11) to be replaced by

X- 1
!"E (a+b log -E- P

where a, b are constants and b ¥ 0. At the Nth stage (and perhaps earlier), the hypo-
thesis (4.1), with n replaced by N(n,u), must be modified to include the logarithmic
terms; at still later stages, higher and higher powers of logarithms accrue in the process
of expanding FY - /Iv.

COROLLARY 4.6. If ¢ jis a solution of (2.1) and Aa ng=g, then
A

~X b |
e ~ g+ 15 e AED as Eso0 (4.12)
378
in the sense of an asymptotic expansion:
A A

b n
wWE) - 6 ijeAs(n) At o™ as E+0 ,

for all n e N.
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COROLLARY 4.7. If A3 nNpg=4g¢g, then the complex co-ordinate z = x+iy is related to

the complex potential x = ®+i¥ by

A

200 ~ 19 22 10201 4 ) (10 ) as x>0 , (4.13)

K
A ey 13

where the constant g is the gravitational acceleration, arg(iyx) € [-x/2,n/2), and the

coefficients K, are real. If the set {1}y B is linearly independent over the

rationals, then the sum in (4.13) is only over exponents in

= {II1B1 Foaot mrB t M, teeot m > 1} ;

Re.o 1

in other words, Kj = 0 whenever Xj eA \l\B o

Proof. On the image Y = 0 of the free boundary, we have
E--a0{1+2c0 X}, a0 , (4.14)
where a and ¢y are constants, and thek::ries converges for sufficiently small values of
19]. Define ©(%) = Y(E(¥)); it is a basic hypothesis in the derivation of (1.1) that x
and 6 are odd functions of ¢, while y is even. Accordingly, (4.12) and (4.14) imply
that

A
8(8) ~ -sgn (X + ) B, ]#] 3) as ¢+0 , (4.15)
6 Aeh 3
I8
for certain coefficients Bj (which are not those in (4.2)). Moreover, it follows from
the boundary condition of the basic problem (or, equivalently, from (1.1), from the fact
that 06(¢#) is the boundary value of Im log(dz/dx), and from suitable choice of the

additive constant in Re log(dz/dyx)) that

%3 = (-3g ]: sin 9)-1/30““), ¢ e [-c,c)\{0}, Y=0 , (4.16)
for some constant c¢ > 0. Using (4.15) in this formula, we obtain (4.13) for =z(¢) (that
is, for arg(iyx) = -w/2 or ¥/2); that the Kj are real follows from the symmetry.

To prove that the asymptotic series for z(x) in (4.13) is the only appropriate
extension (into the half-plane Y < 0) of the series for z(%), we let h denote the
difference between two such extensions to finitely many termg. It then suffices to prove
the following: 1if h(x) 4is analytic and bounded in D = {x : 0 < |x| < ¢,

- -;- < arg(iy) < %}. and if, for some constant ¥ > 0, we have h($) = Of fOI“) as 6+ 0

(with arg(i®) = -x/2 or =/2), then h(x) -O(leu) as x * 0 in D. Now this follows
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> from application of the Phragmén-lLindeldf theorem ((11], p. 176) to the function f
- -1
I . defined by f£(x) = X u\’l(X)l a suitable auxiliary function is w(x) = exp{-(ix) /2).
[
!
; ) It remains to prove that, if the set {1} U B is linearly independent over the !
e3>
A N\ .
1 ,:"5 . rationals, then Xy = 0 whenever A 3 e AB AB, o° Suppose that
LAY a a
- A
2 = -1 22 1020 e b a0 Ve p am P xan’ soet
where 0 < a, €oeol o <\ <y, each “j e AB,O and A e AB\ AB,O' We know, from our
28 construction by way of (4.16), that this approximation may be differentiated term by term,
ol
‘:": and that the exact function z(9) satisfies the boundary condition of the basic problem.
® %
. Then a slight variant of a calculation by Norman ([9], p. 262) shows that, under the
¢
: 3 foregoing hypothesis, the coefficient k = 0. Repeated application of this argument proves
i
ﬁ the result.
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» Appendix. On the numbers Bj‘
k- " We recall that Bj denotes the j-th positive root of Y3(148) = tan(B%/2); its
(" 4
N
_'_.j simplest properties were noted in Lemma 3.1. We now probe a little deeper.
N¢

4

’.Q

A LEMMA A.1. PEach number 8 3 is transcendental.
i

Proof. We abbreviate Bj to B for any fixed j € N. It was shown by Grant ((4],

!

4.1
: ‘4‘ p. 260), albeit somewhat tersely, that 8 is irrational. To prove it transcendental,

)
"‘: - assume the contrary: that B8 is an algebraic irrational number. The equation of which
S

%0

] 8 1is a root may be written

" +1/3(1+

A e.’L8_1 iV3(148) . (a. 1)
N 1-1/3(148)
() Here the right-hand side is an algebraic number (because 8 is one, and the algebraic

:: numbers form a field), so, therefore, is the left-hand side. 1In other words, (-1)8 is an
o algebraic number. But this contradicts the Gelfond-Schneider theorem ([10], p. 76), which

2

-
:‘-: states that aP is transcendental whenever a is algebraic (and neither 0 nor 1)

w1

\ and b is algebraic and irrational.
5:‘;‘ Remark. In Corollary 4.6 we assumed that the sets
S 4oaot + +ooot > '
(\ A3 = {2} v (m‘81 “r”: B2 motm o, 2}

and

W

. B = {81182133l'°' }

are disjoint. It is clear that the truth of this assumption would be implied by the truth

of the following, very natural

%'
<
.-rz Conjecture. The set {1} y B is linearly independent over the rationals.
f-,
":.“. (That is, if xy,...,x, are distinct elements of {1} v B, ana @ see0@,  are
L ]
rational numbers, then )_:_1 ax = 0 implies that By =eens o, = 0.) Unfortunately, our
T
;: only result in this direction is the following.
:3 THEOREM A.2. If Jj ¥ k, then the set {1.3j.8k} is linearly independent over the
. .
% rationals.
Ll
Proof. Assume the contrary: then there exist integers p, q and r, not all zero,
Kl
ﬂ such that p8 3 + qﬂk = r, Neither p nor q can be zero; we may suppose that r ? 0;
"
Rl
f"i',"_, -30-
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(, then at least one of p and q must be positive, say p > 0. Now
20 . ime 1n8, p 178, q 1+1/'3'(1+aj) p 1+1/3(1+ek)'q
Ng (- =e" " = (e e - }
-? 1-i/3(1+8 j) 1-1/3¢ 148 )
"l
xie .
) by (A.1); since Bk = (r-pB.)/q, we have
1O 3
r-pB, q - r-p8. q
i (“DF(1=1/3 (148 D IP(1-1/3(1 + —D)} = (/3048 ) IP/3 (1 « —dy) L (aL2)
h"‘n b q j q
\Q
”'.’f Suppose that q > 0; expanding both sides of (A.2), and re-arranging the result, we obtain
o i¥3 91(8:‘) = Pz(ﬂj) ’
, where P, and P, are polynomials with (real) rational coefficients, and B 3 is real.
»
by ]
L Hence each polynomial is zero, which makes B8 3 an algebraic number and thus contradicts
L3
L Lemma A. 1.
' If q < 0, we re-write (A.2) to have positive exponents p and =-q on both sides,
-* and argue as before.
O
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ABSTRACT (continued)

k H H
$(s) = §-+ ) as "to(s®) as s+vo , (*)
n=1

to arbitrary order; the co-ordinate s is related to distance from the crest as

measured by the velocity potential rather than by length. The first few (and

probably all) of the exponents are transcendental numbers. We are unable to

evaluate the coefficients a explicitly, but define some in terms of global

properties of ¢, and the others in terms of earlier coefficients. The derivation

of (*) includes an assumption about a question in number theory; if that assumption
v m

should be false, logarithmic terms a js n(log 8) n,j' with m j a positive

’

’
integer, would enter the series at very large values of n.

Our results confirm the heuristic calculations of Grant [4] and Norman [9],
and, in effect, remove a tentative element from certain statements in those papers.
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